Graph Construction with Label Information for Semi-Supervised Learning

نویسندگان

  • Liansheng Zhuang
  • Zihan Zhou
  • Jingwen Yin
  • Shenghua Gao
  • Zhouchen Lin
  • Yi Ma
  • Nenghai Yu
چکیده

In the literature, most existing graph-based semisupervised learning (SSL) methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the Low-Rank Representation (LRR), and propose a novel semi-supervised graph learning method called Semi-Supervised Low-Rank Representation (SSLRR). This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real datasets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topics in Graph Construction for Semi-Supervised Learning

Graph-based Semi-Supervised Learning (SSL) methods have had empirical success in a variety of domains, ranging from natural language processing to bioinformatics. Such methods consist of two phases. In the first phase, a graph is constructed from the available data; in the second phase labels are inferred for unlabeled nodes in the constructed graph. While many algorithms have been developed fo...

متن کامل

Inference Driven Metric Learning (IDML) for Graph Construction

Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...

متن کامل

Transductive Learning on Adaptive Graphs

Graph-based semi-supervised learning methods are based on some smoothness assumption about the data. As a discrete approximation of the data manifold, the graph plays a crucial role in the success of such graphbased methods. In most existing methods, graph construction makes use of a predefined weighting function without utilizing label information even when it is available. In this work, by in...

متن کامل

Inference Driven Metric Learning for Graph Construction

Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...

متن کامل

A Comparison of Graph Construction and Learning Algorithms for Graph-Based Phonetic Classification

Graph-based semi-supervised learning (SSL) algorithms have been widely applied in large-scale machine learning. In this work, we show different graph-based SSL methods (modified adsorption, measure propagation, and prior-based measure propagation) and compare them to the standard label propagation algorithm on a phonetic classification task. In addition, we compare 4 different ways of construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.02539  شماره 

صفحات  -

تاریخ انتشار 2016